
WonderWorld: Interactive 3D Scene Generation from a Single Image

“Venetian Market”
“Venice”

“Market Place”

“Street”

“Harbor”
“Colorful Houses”

“Tree”

“Bridge”

Input image Generated 3D virtual world

“Celestial Gate”
“Royal Ballroom”

“Floating Islands”

“Village”

“Forest”
“Palace”

“Space Exploration”

“Alien Temple”

Input image Generated 3D virtual world

Figure 1. Starting with a single image, we interactively generate an immersive, virtual world by extrapolating 3D scenes based on user input.
We recommend seeing the interactive generation process at https://WonderWorld-2024.github.io/.

Abstract

We present WonderWorld, a novel framework for inter-
active 3D scene extrapolation that enables users to explore
and shape virtual environments based on a single input im-
age and user-specified text. While significant improvements
have been made to the visual quality of scene generation,
existing methods are run offline, taking tens of minutes to
hours to generate a scene. By leveraging Fast Gaussian Sur-
fels and a guided diffusion-based depth estimation method,
WonderWorld generates geometrically consistent extrapola-
tion while significantly reducing computational time. Our
framework generates connected and diverse 3D scenes in
less than 10 seconds on a single A6000 GPU, enabling real-

*Equal contribution.

time user interaction and exploration. We demonstrate the
potential of WonderWorld for applications in virtual real-
ity, gaming, and creative design, where users can quickly
generate and navigate immersive, potentially infinite virtual
worlds from a single image. Our approach represents a
significant advancement in interactive 3D scene generation,
opening up new possibilities for user-driven content creation
and exploration in virtual environments. We will release
full code and software for reproducibility. Project website:
https://WonderWorld-2024.github.io/.

1. Introduction
Within the last year, 3D scene generation has surged in pop-
ularity, with many works successfully exploring strong gen-

1

https://WonderWorld-2024.github.io/
https://WonderWorld-2024.github.io/

erative image priors and improvements in monocular depth
estimation. These works have substantially improved the
visual quality, possible viewpoints, and diversity of gener-
ated scenes. However, all of this work has been done of-
fline, where the user provides a single starting image or text
prompt, and then the system, after tens of minutes to hours,
returns a fixed 3D scene or a video of a specific camera path
through the scene. While offline generation may work for
small, discrete scenes or videos, this setup is problematic
for many scene generation use cases. For example, in game
development, world designers want to iteratively build 3D
worlds step-by-step, having control over the generation pro-
cess and being able to see intermediate steps with low latency.
In VR and video games, users expect scalable, varied content
that is larger and more diverse than the scenes currently gen-
erated. In the future, users may desire even more: a system
that allows them to freely explore and shape a dynamically
evolving, infinite virtual world. All of these motivate the
problem of interactive 3D scene generation, where the user,
with low latency, can control what the scene extrapolation
should feature, e.g., through text prompts, and where that
scene extrapolation should take place, e.g., through camera
control.

To understand the technical problems that prevent in-
teractivity, we examine several state-of-the-art 3D scene
generation methods [7, 38, 39] and identify two major lim-
itations. First, the scene generation is far too slow to be
interactive. Each generated scene requires tens of minutes
for the multiple passes of generative image inpainting and
depth estimation. Second, the generated scenes have strong
geometric distortion along the scene boundary, preventing
extrapolation from the generated scene.

In this paper, we propose a framework named Wonder-
World for interactive scene generation. Our input is a single
image, and our output is a set of connected yet diverse 3D
scenes. To address the speed issue, our core technique in-
volves Fast Gaussian Surfels, whose optimization requires
less than 1 second due to a principled, geometry-based ini-
tialization, and a layer-wise scene generation, where each
scene is parsed for regions where disocclusion could happen
and then pre-generating content to fill these special regions.
To address the geometry distortion problem, we introduce a
guided diffusion-based depth estimation method that ensures
the alignment between the geometry of the extrapolated and
existing scenes.

Using our framework, extrapolating or generating a scene
takes less than 10 seconds on a single A6000 GPU. This
breakthrough unlocks the potential for interactive scene gen-
eration, allowing users to extrapolate a single image into
a vast and immersive virtual world. Our approach enables
new possibilities for applications in virtual reality, gaming,
and creative design, where users can quickly generate and
explore diverse 3D scenes.

2. Related Work

Perpetual view generation. Early examples of scene gen-
eration focused on extending a single image into a perpetual
video with a given camera trajectory: Infinite Images [19]
used image stitching, while Infinite Nature [27] and its
follow-up works [5, 26] used GANs specialized to nature
images. Since the advent of generative diffusion models,
subsequent work has expanded the scope and domain of
this work. SceneScape [10] generates a domain-free per-
petual scene using a single prompt to create a long mesh.
WonderJourney [38] instead uses an LLM to generate di-
verse content and a point cloud representation for the world.
While these later works use explicit 3D representations, their
techniques are designed with their specific camera trajectory
(forward / backward) in mind and can cause issues when
facing generic camera trajectories, especially ones that pan
sideways or have small rotations. These works also run
offline and require tens of minutes to render a single path.

Single 3D scene generation. Recently, scene generation
methods have focused primarily on a single, dense scene
viewable from a local region of viewpoints, with many ex-
plicitly focusing on indoor scenes [2, 9, 16]. Text2NeRF [41]
generates domain-free scenes but uses a NeRF representa-
tion and focuses on local camera trajectories. Recent meth-
ods such as LucidDreamer [7] and CAT3D [12] generate
multi-view images of a scene, and RealmDreamer [34] dis-
till multi-view image and depth priors to generate a 3D
scene [22]. Another line of relevant work focuses on single-
image 3D scene reconstruction by explicit pose-conditioning
or training on scenes [6, 33, 36, 39]. While these approaches
demonstrate significant improvements in the quality of 3D
scene generation, they are offline processes generating a
fixed scene that is then provided to the user. Since the scene
is fixed, their methods do not allow user interaction, e.g.,
not enabling the user to choose what and where they want
to see. We instead address the problem of interactive 3D
scene generation, which requires significant improvements
with respect to the runtime and the tackling of geometric
distortion in extrapolation.

Video generation. Recent improvements in video genera-
tion [1, 3, 4, 24] have led to interest in whether these models
can also be used as scene generators. Several works have
attempted to add camera control to these models, allowing
a user to “move” through the scene; e.g., both MotionC-
trl [37] and CameraCtrl [13] train specialized modules to
enable camera pose control using datasets with camera pose.
While these techniques are promising, generated video has
no guarantee regarding 3D consistency or adherence to the
user-specified camera poses. In addition, current video gen-
eration models remain slow and thus not capable of enabling

2

Guided depth
diffusion

Guided depth
diffusion

Input image Estimated depth

Depth-guided
Layer decomp.

Geometric layers

Train Fast
Gaussian Surfels

Initial scene

Render
current
scene

Outpainting
diffusion

Outpainted imageRendered image Rendered depth Estimated depth

Layer decomp.
&

Train Fast
Gaussian Surfels

New scene

Guidance

Guidance

Ground depth

User / LLMText

Inf

Figure 2. The proposed WonderWorld framework: Our system takes a single image as input and generates connected diverse 3D scenes
to form a virtual world. Users can specify new scene contents and styles via text. Our system generates a single 3D scene in less than 10
seconds.

interactivity.

Fast 3D scene representations Substantial progress has
been made in the last several years regarding the quality
and speed of 3D representations; the seminal NeRF [29]
paper was followed by Plenoxels [11], InstantNGP [30],
and finally 3D Gaussian Splatting [22]. In the context of
3DGS, researchers also revisited the traditional idea of sur-
fels [31, 35]: High-quality Surface Reconstruction using
Gaussian Surfels [8] and 2D Gaussian splatting for geometri-
cally accurate radiance fields [17]. While the main focus of
these methods is improving reconstruction quality, our goal
is to use surfels to speed up the optimization process since
they can be initialized in a principled geometry-based way
using depth and normals.

3. Approach
Our goal is to generate a set of diverse yet coherently con-
nected 3D scenes, forming a potentially infinite virtual world.
To this end, we propose WonderWorld, a framework that al-
lows fast scene extrapolation and real-time rendering for an
interactive visual experience.

Overview We show an illustration of our WonderWorld
framework in Figure 2. The main idea is to start by generat-
ing a 3D scene from an input image and iteratively extending
it by extrapolating existing scenes. Users can provide text to
specify the scene contents to generate, or that can be left to
a Large Language Model (LLM).

The major technical challenges include scene generation
speed and geometric distortion in extrapolated scenes. To
speed up scene generation, we adopt the traditional idea
of surfels [31, 35], extend them to 3DGS, and show that

this extension allows a principled geometry-based initializa-
tion that significantly reduces the optimization time to < 1
second. To deal with the disocclusion holes in generated
scenes, we introduce a layer-wise scene generation strategy
that is free from multi-view image generation. Thus, Won-
derWorld allows for fast scene generation within 10 seconds
and real-time rendering, simultaneously on a single GPU. To
address geometric distortion, we propose to utilize guided
depth diffusion to generate geometry for the new scenes.
Guided depth diffusion is robust and flexible, allowing the
specification of various geometric constraints.

3.1. Fast Gaussian Surfels

We introduce Fast Gaussian Surfels (FGS) to represent our
generated 3D scenes. FGS can be seen as a lightweight
version of 3DGS with every Gaussian kernel’s z-axis shrunk
to zero. In particular, FGS consists of a set of Gaussian
surfels, where each Gaussian surfel is represented by a set
of parameters {p,q, s, o, c}, where p denotes the 3D spatial
position of the Gaussian kernel, q denotes the orientation
quaternion, s = [sx, sy] denotes the scales for the x-axis
and y-axis, o denotes the opacity, and c denotes the RGB
color. We assume Lambertian surfaces in generated scenes,
and thus the 3-dimensional color c is view-independent. The
kernel of a Gaussian surfel is

G(x) = e−
1
2 (x−p)TΣ−1(x−p), (1)

where the covariance matrix Σ is constructed from the scales
and the rotation matrix Q that can be obtained from the
quaternions q. The covariance matrix is

Σ = Qdiag
(
s2x, s

2
y, 0

)
QT . (2)

The rasterization and alpha-blending rendering process re-
mains the same as the 3D Gaussian Splatting (3DGS) [22].

3

𝑑

𝑓

𝑑

𝑓

𝜃

𝑠	~	𝑇! = 2𝑑/𝑓 𝑠	~	𝑇!/ cos 𝜃

(b) Slant surface(a) Surface parallel to image plane

Figure 3. Scale initialization of FGS: We initialize the scales such
that a surfel is proportional to the Nyquist interval to alleviate alias
holes.

Geometry-based initialization The core idea of our fast
optimization is that, since we generate our Fast Gaussian
Surfels from a single-view image, we can assume that every
single pixel in the image reveals a surfel in the underlying 3D
scene. Therefore, a surfel’s parameters can be readily solved
or approximated by leveraging the information of the corre-
sponding pixel, rather than being randomly initialized and
optimized. The optimization is thus simplified, accelerated,
and properly regularized.

Specifically, given an input image I of H ×W pixels, we
aim at generating H ×W surfels to represent the underlying
3D scene. The color c of a surfel is initialized as the RGB
values of the pixel. A surfel’s position p can be estimated
by back-projection:

p = R−1(d ·K−1[u, v, 1]T −T), (3)

where u, v denote the pixel coordinates, and K, R, T denote
the intrinsic matrix, rotation matrix, and translation vector
of the current camera, respectively. d denotes the estimated
depth of the pixel. We discuss depth estimation in more
detail in Section 3.3.

To initialize the orientation of the surfel, note that the
third column Qz of the rotation matrix Q = [Qx,Qy,Qz]
is the normal direction of the surfel. Thus, we can construct
the rotation matrix Q:

Qz = n, Qx =
u× n

∥u× n∥
, Qy =

n×Qx

∥n×Qx∥
, (4)

where u = [0, 1, 0]T denotes a unit up-vector, n = R−1nc
denotes an estimated normal of the pixel in world frame
and nc denotes the camera-frame normal estimated from the
image I .

When it comes to the scale s, we need to find an ap-
propriate initialization such that it prevents aliasing, e.g., it
should not lead to holes when moving closer to a scene. To
achieve this, we consider the Nyquist interval for a surfel.
Let the sampling interval of our image (i.e., pixel size) be
1. The Nyquist interval TN for a surfel at distance d is then
TN = 2d/f , where f denotes the focal length. We want to
set the scales of the surfel to be proportional to TN , such that
it approximately covers the interval TN to minimize aliasing.
Intuitively, this means that the surfels provide seamless cov-
erage of the visible surface without significant overlap. We

3DGS + Mip-Splatting Fast Gaussian Surfels (Ours)

Figure 4. Our FGS can alleviate alias holes when moving into a
scene.

Input image Significant depth edge Foreground layer

Figure 5. We use significant depth edges, i.e., edges in the depth
map with large spatial gradient, to identify the foreground layer.

show an illustration in Figure 3 (a) for the case where the
surface is parallel to the image plane. As shown in Figure 3
(b), if the surface is not parallel to the image plane, we need
to add a cosine term to the scale. Thus, we initialize the
scales as

sx = kd/fx cos θx, sy = kd/fy cos θy, (5)

where k = 1/
√
2 denotes a hyperparameter, cos θx denotes

the cosine between the image plane normal and the surfel
normal projected to the XoZ plane. We show a comparison
using our FGS scale initialization and Mip-Splatting [40]
anti-aliasing 3D Gaussian initialization in Figure 4 after op-
timization. We observe that our scale initialization alleviates
the alias holes when moving into the generated scene.

Optimization We use the same photometric loss function
as 3DGS: L = 0.8L1 + 0.2LD-SSIM. We optimize for the
opacity, orientation, and scales, but not for colors and spatial
positions. Our optimization includes 100 iterations and no
densification process. In practice, we add a small number
to the z axis instead of zero to allow higher representation
capacity while leveraging our principled initialization.

3.2. Layer-wise Scene Generation

To fill the disocclusion holes in generated scenes, we intro-
duce a layer-wise scene generation strategy. The main idea
is to parse the geometric layer structure of the scene to dis-
cover the regions where significant disocclusion could occur,
reveal these regions by removing the occluding contents,
and generate contents to fill these regions. We refer to this
process as depth-guided layer decomposition and show an
example in the top row of Figure 2.

4

Outpainting view Another view – No guidance Another view – w/ guidance

Figure 6. A major challenge in generating large scenes is the
geometric distortion. Our guided depth diffusion significantly alle-
viates this problem.

In particular, we decompose an image into three layers
from front to back: the foreground layer F , the background
layer B, and the sky layer Y . Since disocclusion occurs at
the depth edges, we separate these layers by finding depth
edges. We compute a significant depth edge map by thresh-
olding the spatial gradient magnitude of the estimated depth
map. The foreground layer F is formed by finding semantic
segments that contain significant depth edges. We slightly
dilate the segments to ensure that they intersect depth edges
when they indeed do. We show an example in Figure 5. As
for the sky layer, we find it more robust to directly use seman-
tic segmentation, as sky depth estimation is very challenging
for depth estimators, as also observed in prior work [26, 38].

Given the layer segmentation, we first inpaint the sky
layer by a diffusion model and use the inpainted sky image
to train a FGS for it. Then, we inpaint the background layer
and train a FGS on top of the frozen sky FGS. Finally, we
train the foreground FGS on top of the frozen background
and the sky FGS.

3.3. Guided Depth Diffusion

To generate an infinite world, we need to extrapolate existing
scenes to unexplored space. One fundamental challenge is
the geometric distortion during extrapolation, that is, the
newly generated scene contents may have a significant geo-
metric gap to the existing scene contents, so they appear to
be broken when seen from a different viewpoint than the out-
painting viewpoint. This is due to the inconsistency between
the estimated depth and the existing geometry.

In particular, let Dv of size H × W be the depth map
rendered from visible existing contents at an outpainting
camera viewpoint with a binary mask Mv ∈ {0, 1}H×W to
indicate visible regions, and let De be the estimated depth
for an outpainted new image Ie. Then we observe a strong
discrepancy between Dv ⊙ Mv and De ⊙ Mv where ⊙
denotes the element-wise product. We show an example in
Figure 6 to demonstrate this issue.

Simple post-processing heuristics, such as alignment by
computing a global shift and scale [7] or fine-tuning the
depth estimator to match the estimated depth with the exist-
ing geometry [38], do not suffice, as they do not reduce the

inherent ambiguity in the estimation of the new scene depth.
To address this challenge, we adopt guidance for depth

diffusion networks. The main idea is to formulate the depth
estimation of an extrapolated scene as a conditional depth
generation problem, i.e., sampling from a depth distribution
p(De | Ie,Dv,Mv), which explicitly takes the observed
depth Dv ⊙Mv as a conditioning guidance signal. We use
a diffusion model because, unlike feedforward networks,
they provide a natural way to sample from the depth poste-
rior [14]. Our guided depth diffusion is based on a latent
depth diffusion model [21]. In short, a latent depth diffusion
model learns to generate a depth map by sampling from
p(D | I), achieved via gradual denoising of a randomly
initialized latent depth map dT with a learned denoiser U-
Net ϵθ(dt, I, t), where t denotes a time step. The generated
depth is given by a decoder D = Decoder(d). We show an
illustration in Figure 7 (a).

From a score-based perspective [15], the denoiser
ϵθ(dt, I, t) predicts an update direction, and the latent depth
generation process is done by recursively applying the up-
dates:

ϵt = ϵθ(dt, I, t), dt−1 = update(dt, t, ϵt). (6)

We inject the visible depth as guidance by modifying the
denoiser as

ϵ̂t = ϵθ(dt, I, t)−st∇dt
∥Dt−1⊙Mv −Dv ⊙Mv∥2, (7)

where ϵ̂t denotes the guided denoiser, Dt−1 =
Decoder(dt−1) denotes a pre-decoded depth map, and st
denotes the guidance weight.

Our modification can be seen as composing two score
functions to sample from the conditional distribution p(De |
Ie,Dv,Mv). This conditional distribution considers both
the visible existing depth Dv and the new scene geometry
in Ie simultaneously, leading to much smoother geometry
extrapolation.

Tackling ground plane distortion We note that our
guided depth diffusion formulation is highly flexible and
allows us to specify different depth constraints. For example,
another significant geometric distortion is that the ground
plane is often curved. Thus, for all generated scenes, we
add depth guidance for the ground plane by replacing the
mask Mv in Eq. 3.3 with a ground mask Mg obtained from
semantic segmentation, and replacing the depth of visible
content Dv with an analytically calculated flat ground depth
Dg .

4. Results
In this section, we present the results of our WonderWorld.
As we are not aware of any baseline method that allows
interactive scene generation, we focus on showcasing the

5

Noisy depth latent
& image latent

Predicted depth
latent update

Denoising
U-Net

(a) Latent diffusion depth estimation

(b) Guided diffusion depth estimation (Ours)

Guided depth update

- ∇|| ||𝟐-=
Predicted update Guidance Masked Decoded

× T

Decoded depth

Figure 7. Illustration of guided diffusion depth estimation. Note,
the colored patches indicate that depth is computed in latent space.

quality of generated large-scale 3D scenes. For this purpose,
we consider open-source baselines and use their official code.
We demonstrate examples of interactive scene generation in
our video and strongly encourage the reader to view it first.

Our baseline methods include WonderJourney [38], a
state-of-the-art perpetual view generation method, and Lu-
cidDreamer [7], a recent 3D scene generation method. Won-
derJourney takes a single image as input and generates a
sequence of point clouds by outpainting images and unpro-
jecting pixels. LucidDreamer takes a single image as input
and synthesizes multi-view images from it to train a 3DGS.
We use publicly available real and synthetic images in our
examples.

4.1. Implementation details

In our implementation, we use the Stable Diffusion Inpaint
model [32] as our outpainting model. We also use it for
inpainting the background and sky layers. We use One-
Former [18] to segment the sky, the ground, and foreground
objects. In the initial scene, we generate the entire sky us-
ing SyncDiffusion [25] offline. We estimate normal using
the Marigold normal estimator [21]. We use Marigold as
our depth diffusion model. In our guided depth diffusion,
we set the guidance weights st such that the norm of the
guidance signal is proportional to the norm of the predicted
update. We use the Euler scheduler [20] with 30 steps for
our depth diffusion, where we apply our guidance in the
last 8 steps. We post-process estimated depth using an ef-
ficient SAM [23, 28], similar to WonderJourney [38]. We
also follow WonderJourney to use GPT4 to generate prompts
when users do not provide text, and to enrich the prompt by
adding plausible objects and background text according to
the scene name. We will release full code and software for
reproducibility.

4.2. Qualitative results

We show a qualitative comparison using the same input
image for our WonderWorld and the baseline methods in

Figure 10. Note that our WonderWorld results consist of 9
scenes, and the LucidDreamer result consists of one scene.
WonderJourney only supports extracting 3D points between
two consecutive scenes; we extend the code to support gen-
erating points for up to 4 scenes here.

From Figure 10, we observe that single 3D scene gen-
eration methods like LucidDreamer [7] do not extrapolate
out of predefined scenes and suffer from severe geometric
distortion at the boundaries of the generated scene. Although
WonderJourney [38] allows the generation of multiple scenes
that appear to be coherently connected in specific views, the
geometric distortion is significant when rendered from a
different camera angle. In contrast to baselines, our Wonder-
World significantly alleviates geometric distortion, leading
to a coherent large-scale 3D scene. We show more examples
in Figure 8, Figure 12, and Figure 13].

Since WonderWorld allows for the choice of different text
prompts to change the contents, the generated scenes can
be diverse and different in each run. We show an example
of diverse generation results from the same input image in
Fig. 9. WonderWorld also allows a user to specify different
styles in the same generated virtual world, e.g., Minecraft,
painting, and Lego styles as shown in Fig. 11.

4.3. Generation speed

Since our focus is on making 3D scene generation interac-
tive, we report the scene generation time cost from starting
generation until one can see the results. We show the scene
generation time for a single scene in Table 1. From Table 1
we see that even the fastest existing method, WonderJour-
ney, takes more than 700 seconds to generate a single scene,
spending most of its time generating multiple views to fill in
the holes between the existing scene and the newly generated
scene. LucidDreamer generates a slightly extended scene
from the input image and spends most of its time generating
multiple views, aligning depth for these views, and training
a 3DGS to fit these views. In general, prior approaches need
to generate or distill multiple views and optimize their 3D
scene representations for a significant amount of time. We
accelerate the representation optimization by our FGS that
benefits from a principled geometry-based initialization, and
reduce the number of images needed by our layer-wise scene
generation strategy. Together, these contribute to our fast
scene generation. We show an analysis of our time cost
in Table 2. Since diffusion model inference (outpainting,
layer inpainting, depth, and normal estimation) takes the
most time, our method will benefit from future advances in
accelerating diffusion inference.

5. Conclusion
We introduce WonderWorld, a system for interactive 3D
scene generation, featuring technical improvements that
significantly speed up generation time and improve perfor-

6

“Tree”
“Ancient Library”

“Serene Courtyard”

“Garden”

“Oak Trees”
“Study Spot”

“Campus Cafe”

“Campus Bookstore”

Input image Generated 3D virtual world

“Village”
“Cave”

“Mountain”

“Ancient Spire”

“Thatched House” “Temple of
Ancient Secret”

“Cobblestone Road”

“Bush”

Input image Generated 3D virtual world

“Marketplace”
“Forest”

“Countryside”

“River”

“Moonlit Pagoda”
“Seaside”

“Winter Snow”

“Snowy Mountain”

Input image Generated 3D virtual world

“Temple of Heaven”
“Imperial Garden”

“Tea Garden”

“Monastery”

“Summer Palace”
“Tea House”

“Garden Path”

“Courtyard”

Input image Generated 3D virtual world

Figure 8. Qualitative examples. These examples are generated with scene contents automatically generated by the LLM.

7

“Cabin”
“Tree”

“Bonsai”

“Cabin”

“Stream”
“Meadow”

“Woodlands”

“Volcano”

Input image

Generated 3D virtual world A

“Riverside”
“Forest”

“Bush”

“Lake”

“Campus”
“Market”

“Town Square”

“Farm”

Generated 3D virtual world B

Figure 9. Diverse generation: Our WonderWorld allows generating different virtual worlds from the same input image.

Table 1. Time costs for generating a single scene, on an A6000
GPU.

WonderJourney [38] LucidDreamer [7] WonderWorld (Ours)

749.5 seconds 798.1 seconds 9.5 seconds

Table 2. Time cost analysis for WonderWorld in generating a single
scene, tested on an A6000 GPU.

Outpainting Layer generation Depth Normal FGS

2.1s 2.3s 2.5s 0.8s 1.9s

mance for large, diverse scenes. WonderWorld allows users
to interactively generate and explore the parts of the scene
they want with the content they request.

Limitations A limitation of WonderWorld is the low scene
density, as each scene only has up to H ×W Gaussian sur-
fels. Another limitation is the difficulty in handling detailed
objects, such as trees, which can lead to inaccurate depth
estimation, leaving “holes” or “floaters” when the viewpoint
changes. We demonstrate a failure case in our video. There-
fore, an exciting future direction is using WonderWorld to
interactively prototype a coarse world structure, and then re-
fining it to boost scene density, fill holes, and remove floaters

with slower single-scene multi-view diffusion models.

References
[1] Bar-Tal et al. 2024. Lumiere: A Space-Time Diffusion Model

for Video Generation. arXiv:2401.12945 (2024). 2
[2] Miguel Angel Bautista, Pengsheng Guo, Samira Abnar, Wal-

ter Talbott, Alexander Toshev, Zhuoyuan Chen, Laurent Dinh,
Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, et al. 2022.
Gaudi: A neural architect for immersive 3d scene genera-
tion. Advances in Neural Information Processing Systems 35
(2022), 25102–25116. 2

[3] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel
Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,
Zion English, Vikram Voleti, Adam Letts, et al. 2023. Stable
video diffusion: Scaling latent video diffusion models to large
datasets. arXiv preprint arXiv:2311.15127 (2023). 2

[4] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue,
Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luh-
man, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya
Ramesh. 2024. Video generation models as world simulators.
(2024). https://openai.com/research/video-
generation-models-as-world-simulators 2

[5] Lucy Chai, Richard Tucker, Zhengqi Li, Phillip Isola, and
Noah Snavely. 2023. Persistent Nature: A Generative Model
of Unbounded 3D Worlds. In Proceedings of the IEEE/CVF

8

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

WonderWorld (Ours)

LucidDreamer

WonderJourney

WonderWorld (Ours)

LucidDreamer

WonderJourney

WonderWorld (Ours)

LucidDreamer

WonderJourney

WonderWorld (Ours)

LucidDreamer

WonderJourney

Figure 10. Baseline comparison. The inset with blur dashed bounding box is the input image.

Style: Painting
Content: Bush

Style: Minecraft
Content: Village

Style: Painting
Content: Market

Style: Painting
Content: Campus

Input image Generated 3D virtual world with style changes

Style: Minecraft
Content: Mountain Style: Lego

Content: Skyscraper
Style: Lego

Content: Countryside

Style: Lego
Content: House

Figure 11. Our WonderWorld allows a user to specify different styles in the same generated virtual world, e.g., Minecraft, painting, and Lego
styles.

9

Input image Generated 3D virtual world

“Church Tower”
“Woodland Trail”

“Field”

“Apple Orchard”

“Market Place”
“Flower Garden”

“Streetlamp”

“Winding Path”

Input image Generated 3D virtual world

“Village Market”
“Winding Path”

“Countryside”

“Oak Trees”

“Lakeside”
“Clifftop Ruins”

“Palm Trees”

“Cabin”

“Italian Cypress”
“Historic Building”

“Courtyard”

“Lake”

“Library Exterior”
“Art Gallery”

“Campus Party”

“Coffee House”

Input image Generated 3D virtual world

Input image Generated 3D virtual world

“Sunlit Library”
“College Quad”

“Campus Tower”

“Fountain Statue”

“Science Auditorium”
“Art Studio”

“Sports Field”

“Music Band”

Figure 12. Qualitative examples. These examples are generated with scene contents automatically generated by the LLM.

10

“Sand Beach”
“Alpine Village”

“Harbor”

“Market Place”

“Barn”
“Lake”

“Church”

“Shoreline”

Input image Generated 3D virtual world

Input image Generated 3D virtual world

“Street”
“Park”

“Central square”

“Garden”

“Public Library”
“Café House”

“Market”

“Cathedral”

Input image Generated 3D virtual world

“Grassland”
“Meadow”

“Central Square”

“Riverside”

“Indian Street”
“Market Place”

“Winding Path”

“Campus”

Figure 13. Qualitative examples. These examples are generated with scene contents automatically generated by the LLM.

Conference on Computer Vision and Pattern Recognition.
20863–20874. 2

[6] Eric R Chan, Koki Nagano, Matthew A Chan, Alexander W
Bergman, Jeong Joon Park, Axel Levy, Miika Aittala, Shalini
De Mello, Tero Karras, and Gordon Wetzstein. 2023. GeNVS:
Generative novel view synthesis with 3D-aware diffusion
models. 2

[7] Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin Lee,
and Kyoung Mu Lee. 2023. Luciddreamer: Domain-free
generation of 3d gaussian splatting scenes. arXiv preprint
arXiv:2311.13384 (2023). 2, 5, 6, 8

[8] Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu,
Huamin Wang, and Weiwei Xu. 2024. High-quality Sur-
face Reconstruction using Gaussian Surfels. arXiv preprint

arXiv:2404.17774 (2024). 3
[9] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava,

Graham W. Taylor, and Joshua M. Susskind. 2021. Uncon-
strained Scene Generation with Locally Conditioned Radi-
ance Fields. In ICCV. 2

[10] Rafail Fridman, Amit Abecasis, Yoni Kasten, and Tali Dekel.
2023. Scenescape: Text-driven consistent scene generation.
arXiv preprint arXiv:2302.01133 (2023). 2

[11] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. 2022. Plenox-
els: Radiance fields without neural networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5501–5510. 3

[12] Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur

11

Brussee, Ricardo Martin-Brualla, Pratul Srinivasan,
Jonathan T Barron, and Ben Poole. 2024. CAT3D: Create
Anything in 3D with Multi-View Diffusion Models. arXiv
preprint arXiv:2405.10314 (2024). 2

[13] Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai,
Hongsheng Li, and Ceyuan Yang. 2024. CameraCtrl: En-
abling Camera Control for Text-to-Video Generation. arXiv
preprint arXiv:2404.02101 (2024). 2

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising
diffusion probabilistic models. Advances in neural informa-
tion processing systems 33 (2020), 6840–6851. 5

[15] Jonathan Ho and Tim Salimans. 2022. Classifier-free dif-
fusion guidance. arXiv preprint arXiv:2207.12598 (2022).
5

[16] Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson,
and Matthias Nießner. 2023. Text2room: Extracting textured
3d meshes from 2d text-to-image models. arXiv preprint
arXiv:2303.11989 (2023). 2

[17] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2024. 2d gaussian splatting for geometrically
accurate radiance fields. arXiv preprint arXiv:2403.17888
(2024). 3

[18] Jitesh Jain, Jiachen Li, Mang Tik Chiu, Ali Hassani, Nikita
Orlov, and Humphrey Shi. 2023. Oneformer: One trans-
former to rule universal image segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2989–2998. 6

[19] Biliana Kaneva, Josef Sivic, Antonio Torralba, Shai Avidan,
and William T Freeman. 2010. Infinite images: Creating and
exploring a large photorealistic virtual space. Proc. IEEE 98,
8 (2010), 1391–1407. 2

[20] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
2022. Elucidating the design space of diffusion-based gen-
erative models. Advances in Neural Information Processing
Systems 35 (2022), 26565–26577. 6

[21] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Met-
zger, Rodrigo Caye Daudt, and Konrad Schindler. 2023. Re-
purposing diffusion-based image generators for monocular
depth estimation. arXiv preprint arXiv:2312.02145 (2023).
5, 6

[22] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 2023. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics 42,
4 (2023), 1–14. 2, 3

[23] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross
Girshick. 2023. Segment Anything. In ICCV. 4015–4026. 6

[24] Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan
Huang, Rachel Hornung, Hartwig Adam, Hassan Akbari, Yair
Alon, Vighnesh Birodkar, et al. 2023. Videopoet: A large
language model for zero-shot video generation. arXiv preprint
arXiv:2312.14125 (2023). 2

[25] Yuseung Lee, Kunho Kim, Hyunjin Kim, and Minhyuk Sung.
2023. Syncdiffusion: Coherent montage via synchronized
joint diffusions. Advances in Neural Information Processing
Systems 36 (2023), 50648–50660. 6

[26] Zhengqi Li, Qianqian Wang, Noah Snavely, and Angjoo
Kanazawa. 2022. Infinitenature-zero: Learning perpetual
view generation of natural scenes from single images. In Eu-
ropean Conference on Computer Vision. Springer, 515–534.
2, 5

[27] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Maka-
dia, Noah Snavely, and Angjoo Kanazawa. 2021. Infinite
nature: Perpetual view generation of natural scenes from a
single image. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 14458–14467. 2

[28] Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han
Hu, and Yixuan Yuan. 2023. Efficientvit: Memory efficient
vision transformer with cascaded group attention. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 14420–14430. 6

[29] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. 2021.
Nerf: Representing scenes as neural radiance fields for view
synthesis. Commun. ACM 65, 1 (2021), 99–106. 3

[30] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. 2022. Instant neural graphics primitives with a
multiresolution hash encoding. ACM transactions on graphics
(TOG) 41, 4 (2022), 1–15. 3

[31] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and
Markus Gross. 2000. Surfels: Surface elements as rendering
primitives. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques. 335–342. 3

[32] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-resolution im-
age synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition. 10684–10695. 6

[33] Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann,
Hong-Xing Yu, Yunzhi Zhang, Eric Ryan Chan, Dmitry La-
gun, Li Fei-Fei, Deqing Sun, et al. 2023. ZeroNVS: Zero-Shot
360-Degree View Synthesis from a Single Real Image. arXiv
preprint arXiv:2310.17994 (2023). 2

[34] Jaidev Shriram, Alex Trevithick, Lingjie Liu, and Ravi Ra-
mamoorthi. 2024. RealmDreamer: Text-Driven 3D Scene
Generation with Inpainting and Depth Diffusion. arXiv
preprint arXiv:2404.07199 (2024). 2

[35] Richard Szeliski and David Tonnesen. 1992. Surface mod-
eling with oriented particle systems. In Proceedings of the
19th annual conference on Computer graphics and interactive
techniques. 185–194. 3

[36] Ayush Tewari, Tianwei Yin, George Cazenavette, Semon
Rezchikov, Joshua B Tenenbaum, Frédo Durand, William T
Freeman, and Vincent Sitzmann. 2023. Diffusion with For-
ward Models: Solving Stochastic Inverse Problems Without
Direct Supervision. arXiv preprint arXiv:2306.11719 (2023).
2

[37] Zhouxia Wang, Ziyang Yuan, Xintao Wang, Tianshui Chen,
Menghan Xia, Ping Luo, and Ying Shan. 2023. Motionctrl:
A unified and flexible motion controller for video generation.
arXiv preprint arXiv:2312.03641 (2023). 2

[38] Hong-Xing Yu, Haoyi Duan, Junhwa Hur, Kyle Sargent,
Michael Rubinstein, William T Freeman, Forrester Cole, De-

12

qing Sun, Noah Snavely, Jiajun Wu, et al. 2024. WonderJour-
ney: Going from Anywhere to Everywhere. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2, 5, 6, 8

[39] Jason J Yu, Fereshteh Forghani, Konstantinos G Derpanis,
and Marcus A Brubaker. 2023. Long-Term Photometric Con-
sistent Novel View Synthesis with Diffusion Models. arXiv
preprint arXiv:2304.10700 (2023). 2

[40] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. 2023. Mip-splatting: Alias-free 3d gaussian
splatting. arXiv preprint arXiv:2311.16493 (2023). 4

[41] Jingbo Zhang, Xiaoyu Li, Ziyu Wan, Can Wang, and Jing
Liao. 2024. Text2nerf: Text-driven 3d scene generation with
neural radiance fields. IEEE Transactions on Visualization
and Computer Graphics (2024). 2

13

	. Introduction
	. Related Work
	. Approach
	. Fast Gaussian Surfels
	. Layer-wise Scene Generation
	. Guided Depth Diffusion

	. Results
	. Implementation details
	. Qualitative results
	. Generation speed

	. Conclusion

